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LETTER TO THE EDITOR 

Polymer chains in porous media 

J D Honeycutt, D Thirumalai and D K Klimov 
Institute for Physical Science and Technology and Department of Chemistry and Bio- 
chemistry, University of Maryland, College Park, MD 20742, USA 

Received 12 October 1988 

Abstract. Static and dynamical properties of polymer molecules with and without excluded 
volume in porous media are investigated by Monte Carlo simulations. The exponents 
characterising the shape of the polymer approach their asymptotic values extremely slowly. 
The dynamical information indicates that the chain is trapped in local free-energy minima 
for random times, ?,, which have a very broad distribution. These properties are compared 
with those found in regular networks formed by various periodic distributions of obstacles. 

It has been suggested that the properties of a polymer molecule trapped in a porous 
medium are important in many practical situations including filtration, enhanced oil 
recovery processes, gel permeation chromatography, and transport of solute through 
membranes [ 1,2]. Numerous experiments of partitioning and diffusion of flexible 
polymer coils in porous glass, in membranes and under a variety of different random 
physical conditions have been carried out [3-51. In these situations the polymer 
molecule is trapped in a random environment created by the distribution of molecules 
of the medium. The confinement of the polymer chain to a restricted portion of phase 
space leads to a loss in entropy. The shape of the polymer is determined mainly by 
the loss in configurational entropy and transport (diffusion) of the chain proceeds by 
overcoming the entropic bottlenecks generated by the random media. 

Several of the experiments have been analysed using the scaling theory which was 
developed for the case of a polymer molecule confined to pores with regular geometry 
[6]. However, when randomness becomes relevant it is clear that the pore structure 
has to be described using a distribution of length scales [7]. In this case, the precise 
dependence of various quantities such as the mean square end-to-end distance, proba- 
bility distribution of the end-to-end vector, and relaxation times on the parameters of 
the system is difficult to obtain analytically. 

In this letter, we report the properties of freely jointed chains in random porous 
media using Monte Carlo simulations. Scaling arguments are used to analyse the 
results. The porous medium is modelled using the site percolation method. The model 
we have used is a modification of the one recently introduced by Baumgartner and 
Muthukumar ( B M )  [SI?. Following these authors, we introduce a cubic lattice each 
of whose sites is occupied by an obstacle with probability p or unoccupied with 
probability (1-p) .  A freely jointed chain consisting of N beads (where in our 
simulations N varies from 5 to 160) is placed in an unoccupied region of the lattice. 

i Note that the P of [8] corresponds to ( 1  - P )  in the present letter. 
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The chain is free to move in continuous space. The interaction between a bead at r, 
and an obstacle at R, is assumed to be a Gaussian-like potential, 

and is zero for r > r, where r = I ri - RjI. The factor in square brackets ensures that the 
potential and its first derivative approach zero continuously as r + r , .  The parameters 
used in the present simulations are E/kgT=39.0, u=0.5a and rC=0.7a, where a is 
the lattice spacing. Neglecting overlap effects, the excluded volume per obstacle for 
this choice of parameters is 1 . 0 5 3 ~ ~ .  For the freely jointed chain with no excluded 
volume (NEV),  the only constraint on the conformations of the chain is that the bond 
length, 1, between successive beads is fixed at a value 1 = 0.6a. We have also studied 
the effect of excluded volume (EV), and in this case the monomers have an additional 
pairwise repulsive interaction given by V(lri - rjl = I )  = ~ ~ ~ ( ( + ~ ~ / r ) ~ ~  with .zI2/ kT = 2.0 
and ul2 = 0.3a. The simulations were performed using both the 'slithering snake' 
algorithm [9] and the kink-jump technique [ 101. The former was used to enhance the 
efficiency of exploration of configuration space and the latter to obtain dynamical 
information. 

The Hamiltonian for a Gaussian chain in a porous medium can be written as 

where p ( r )  =Xi"=, s i S ( r - R i )  with M being the total number of lattice sites and si is 
either 0 or 1. The distribution of the obstacles is taken to be [13] 

P [ S P ( ~ ) ,  siI-Po[%~(r)l[(l -p)S(si)+pS(1 -sill 

where 

M r ) = p ( r ) - p ,  P0[6p(r)l -exp( - t  I ~ ( r )  d3r/p0) 

and 

is the mean density. The free energy is obtained by averaging the logarithm of the 
partition function, 2, using the above distribution. This can be done using the replica 
trick [ l l ]  and the result for [ Z " ] ,  is (neglecting factors that do not survive in the n + 0 
limit) 

[znlP - [ fi ~ [ r , ( s )  exp( -2 21 JoL ds  t t ( s ) +  U,, (3a)  
a = l  a = l  

where a and p label the replicas and 

Uefi=ln { l + p  [ exp (po:p2z - a 4  [ o L d s [ o L d s r [ d 3 r f ~ r a ( s ) - r ) ~ ( r ~ ( s f ) - r ) ) - ~ ] ] .  

( 3 b )  
For the theory given by (3) dimensional analysis suggests that the appropriate coupling 
constant scales as pm. The same conclusion has been reached by BM using different 
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arguments?. Using this as the scaling variable one can write the mean square end-to-end 
distance averaged over disorder as 

where (R2)o = N12. By excluding certain regions of configuration space the obstacles 
induce an effective attractive interaction between the monomers. The chain is expected 
to shrink in size with respect to (R2)o and is localised in an optimal pocket. For 
sufficiently large N we find that [ ( R 2 ) ] ' l 2  - NI/'. This implies that f (x )  - l/x3l2. When 
excluded volume effects are taken into account the situation is more difficult because 
of the competition between the repulsive energy arising due to self-avoidance and the 
effective attractive interaction due to the obstacles. In this case the present simulations 
are consistent with (4) with (R2)0-N6/512.  We have not been able to obtain the 
asymptotic form of the scaling function f (pm) because, as shown below, the approach 
to the asymptotic behaviour is extremely slow. The physical limit of shriekage is a 
compact globule and thus we can conjecture that for the EV case the asymptotic 
behaviour is given by [ ( R 2 ) ] -  N2/3(l /p)16/1s .  The scaling of [ (R')]  with N (for both 
the EV and NEV case) can be easily obtained using the standard Flory argument, if the 
form of the attractive potential, U,, as a function of [(R')]  is known. The calculation 
of U,  does not appear straightforward. An estimate of U,  can be obtained from the 
scattering function and this will be considered elsewhere. 

Assuming that scaling holds, the distribution of the end-to-end vector, R, is expected 
to have the following general functional form [ 131: 

P(X) - exP(-(lxl/cJe,)S) ( 5 )  

where x is the Cartesian component of R and ueff is the appropriate scaling length. 
This form should be valid as long as teff is larger than the percolation connectedness 
length, 5. In our simulations, values of p are typically well below the site percolation 
threshold, p,=O.6883, and so 5 is small and (5) should be valid with ueff -[(R2)]' '2.  
When the functional form given by (5) is correct, 6 = 1/( 1 - v )  where v is the correlation 
length exponent for [(R')] [ 131. When p = 0, 6 = 2.0 for the NEV case and 6 = 2.5 for 
the EV case. Although (5) is expected to hold only asymptotically it is useful to consider 
6 as a function of N. We have calculated the scaling length ueff and the exponent 6 
as functions of both p and N by obtaining the best fits to the moments (up to the 
eighth) of the distribution function obtained from the simulations. Figure 1 shows 
that the functional form given by (5) fits our Monte Carlo distribution functions 
remarkably well, for N as small as 10 and arbitrary p .  Although we have performed 
simulations of polymers in random media with N as large as 80, we have presented 
the results P(x)  for smaller N values in figure 1 to illustrate that even for these small 
values the expected scaling behaviour for P ( x )  is obtained! The approach to the 
asymptotic value of 6 can be inferred by considering the dependence of S N  - 6, on 
N, where 8N is the effective exponent for a given N and 6, is the asymptotic ( N  >> 1) 
value. The simulations as well as analysis suggest that [14] S N  - 6,- N-"'p' where 
a( p )  is an exponent that depends in general on both p and the self-avoidance criterion. 
The exponent, a ( p ) ,  is obtained by considering values of N up to 80. First consider 

t A different distribution has been considered in [12], 
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Figure 1. Distribution function of the x component of the end-to-end distance. Results 
for only small values of N are displayed to show that even for short chains the expected 
scaling behaviour for P ( x )  (see equation ( 5 ) )  is obtained. In each case the full curve 
denotes Monte Carlo data and the broken curve a best fit to (5). 

the case of p = 0, for which values of 8, and v are known (almost) exactly. The 
exponent a ( p  = 0) for the freely jointed chains, computed using the exact distribution 
function [15] for arbitrary N, is found to be 1.0. For the EV case, a ( p  = 0) is estimated 
to be at least unity based on the present simulations. We reached a similar conclusion 
by reanalysing the moments obtained by Wall and Hioe [16] for self-avoiding walks 
on the diamond lattice. 

When p is non-zero the chains, both with and without excluded volume, show a 
considerably different behaviour. The asymptotic behaviour is expected to be reached 
only when the length of the polymer is much larger than the characteristic length due 
to disorder. Therefore, we expect the approach to the asymptotic behaviour to be 
slower than for the p = 0 case. Because the polymer prefers to be in a region free of 
the obstacles, the relevant length scale which has to be exceeded is some characteristic 
distance between the clusters of obstacles, l p .  It is obvious that lp monotonically 
decreases with increasing p .  This suggests that the asymptotic value for S N  should be 
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reached faster as p increases. For the case of no self-avoidance we find that our results 
are consistent with the above expectations. Specifically, if S, = 1.25, the simulations 
indicate that a( p = 0.2) - 0.3 and a( p = 0.6) - 0.5. The competition between the repul- 
sive interaction due to excluded volume and the effective attractive interaction between 
monomers, which is induced by disorder, forces the approach to the asymptotic value 
of SN to be even slower when self-avoidance is taken into account. The chains will 
shrink to a compact globule with [ (R2)]-  N2’3 only when p is large enough or N 
becomes very large [14]. Because of the very slow approach to the asymptotic value 
we have not been able to determine a( p )  accurately. We do find that SN decreases 
with increasing p but in all cases studied S N  is quite far from the expected asymptotic 
value of 1.5. To probe the onset of the asymptotic behaviour we would have to consider 
chains of much larger size than we have been able to simulate. 

For comparison purposes, we have considered the properties of a polymer chain 
in various other media where the obstacles are arranged in the following regular 
configurations. (i) Obstacles of volume a3 or 8a3 form a periodic cubic array with 
the spacing between the centre of each cube being either 2a or 3a, respectively. (ii) The 
obstacles form a three-dimensional cubic network. The edge of each cube has length 
2a. The polymer chain is forbidden to cross the edges of the cubes. (iii) The obstacles 
are arranged so that they form a network of hollow cubes in a cubic array with a hole 
of length a in each facet. We were motivated to consider this configuration (iii) 
because the dynamics of a polymer chain in such an environment is controlled by well 
characterised entropic bottlenecks. In cases (i) and (ii) we find that the freely jointed 
chain shrinks relative to its free size but the amount of shrinkage is considerably less 
than found in the random medium. This is expected because optimal configurations 
that maximise entropy can be readily found. The distribution function, P ( x ) ,  shows 
unusual behaviour in these cases. Pronounced peaks exist at distances commensurate 
with lattice spacing, i.e. at x = n r  where Tis the distance between the obstacles and n 
is an integer. A theoretical analysis will be presented in a future communication [ 141. 

We now discuss the motion of the chains in the porous medium as well as in the 
network of hollow cubes arranged in a cubic array, focusing on the displacement of 
the centre of mass, RCM, of the chain. Other aspects of the dynamics will be reported 
elsewhere [14]. In both our work and that of Baumgartner and Muthukumar, the 
quantity ( (RcM( t )  - RCM(0))’), as a function of t exhibits three distinct regimes: 
(i) initial diffusive behaviour with diffusion coefficient Do; (ii) subdiffusive behaviour 
for intermediate times fR < t < tp where tp is a function of p and N ;  (iii) normal 
diffusive behaviour for times greater than t p  with diffusion constant D, which is less 
than Do. In order to obtain a microscopic picture of the chain dynamics we followed 
the components of RCM as a function of time for polymer chains in the hollow cubic 
network and in the porous medium. The time scale t p  is typically about lo5 and thus 
we focus on the behaviour of the chain dynamics for times less than tp to probe the 
effect of the expected free-energy barriers. The results are displayed in figure 2 .  There 
are two key features we have observed. (a) For both cases, RCM undergoes a random 
motion about a mean position corresponding to a minimum in the free energy. This 
is followed by sudden excursions to other free-energy minima at random intervals. 
The jump in both cases occurs over a distance which is an appreciable fraction of the 
size of the chain. For the random case this yields an approximate distance separating 

t After this work was completed, we received a preprint from BM [ 171, in which essentially the same model 
is considered. 
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Figure 2. Single component of the centre of mass of a polymer as a function of time for: 
( a )  chain with N = 40 in a random porous medium; ( b )  chain with N = 10 in a lattice of 
hollow cubes. 

the free-energy minima. (b) The residence time (the time the chain spends in the local 
free-energy minimum in which it is trapped) for the random case shows a broader 
distribution than for the regular network. As a consequence several dynamic correla- 
tions are expected to exhibit non-exponential behaviour [14] for the polymer in a 
random medium. These observations have been used to construct a phenomenological 
two-state random-walk model. The calculations based on this model yield results in 
qualitative agreement with the simulations [14]. The behaviour shown in figure 2 
provides further evidence that the hollow cubic network may be a useful caricature of 
motion seen in the more complex porous medium [14,17]. 

The model considered here can be generalised to include more than one polymer 
molecule in the porous medium. This problem is not only of relevance to experiments 
but is also useful in characterising entanglement effects in random media. It is 
interesting to speculate on the effect of quenched randomness on the simplest case of 
the many-chain problem, namely the polymer melt. Here, in analogy with the corre- 
sponding excluded-volume problem, one expects that the effective attractive potential, 
U,, will be screened out. Thus, one would conclude that, at least for the polymer 
melts in porous media, randomness is irrelevant and that molten chains are ideal. 
Further work is required to clarify this point. 
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